Tuatara holds clues to human evolution
A recent paper in Journal of Heredity by Craig Lowe, David Haussler and colleagues at the University of California provides an excellent example of this in action, using sequences from the tuatara genome to identify the evolutionary origin of parts of the human genome.
Lowe and colleagues found a previously unknown retrotransposon in the small part of the tuatara genome that has been sequenced.
This retrotransposon is of a type known as a LINE – Long Interpersed Nucleotide Element - and was named EDGR-LINE (endangered-LINE). A search of human genome against this sequence found 18 elements that are likely to be the result of insertion of this retrotransposon into the genome at some point in evolutionary time. Seventeen of these elements are gene regulatory regions and one is an exon of a gene calledASXL3. ASXL3 is important for regulation of other genes during development and the additional exon co-opted from EDGR-LINE appears to help control its expression.
These 18 exaptation events likely occurred early in mammalian evolution, but the retrotransposon itself has long since been inactivated in humans so all traces of it have been lost. The functional elements it contained are able to be identified because they are under strong purifying selection (i.e. have not accumulated many mutations), so can still be aligned with the tuatara sequence. Its only through this comparison that it is possible to know that these 18 elements originated from the same retrotransposon.
EDGR-LINE was also found in the lizard, frog, and coelecanth, but no traces of it remain in mammals, crocodylia and birds. EDGR-LINE appears to be more slowly evolving in tuatara than in lizards, so is closest to the mammalian ancestral version of EDGR-LINE and hence more informative for identifying elements in the human genome. In fact, 10 of the 18 elements could only be identified by comparison with tuatara and not with these other species.

Evolution of the EDGR-LINE in vertebrates. The EDGR-LINE appears to have been introduced in the common ancestor of tetrapods and lobe-finned fish, and lineages where the LINE was active are shown with green. The LINE is not noticeable in mammals, crocodylia, aves, or testudines, so it has already been inactivated at least twice in evolution.
Lowe and colleagues point out that without the tuatara, we would not have been able to identify these particular functional elements in the human genome, and that we never know what additional information about human evolution we might glean from threatened species in the future. This underscores the importance of projects like the Genome10Kinitiative to sequence 10,000 vertebrate genomes. Of course I would add that we should preserve these species for their intrinsic worth not just because of what they can tell us about human evolution, but this paper does highlight the unexpected ways that genomic data from diverse species can help us understand evolution.
Lowe, C., Bejerano, G., Salama, S., & Haussler, D. (2010). Endangered Species Hold Clues to Human Evolution Journal of Heredity DOI:10.1093/jhered/esq016
No comments:
Post a Comment